AviationDesigning the air traffic control systems of tomorrow
On a good day, flying can be a comfortable and efficient way to travel. All too often, however, eather or overcbooking can cause delays that ripple through the system, inducing missed flights, anxiety, discomfort and lots of lost time and money. Things had gotten so out of whack that in 2003, Congress enacted a law designed to bring online a Next Generation — or NextGen — air traffic control system by January 2020. The Department of Transportation would require the majority of aircraft operating within U.S. airspace to be equipped with new technology to track and coordinate aircraft and would institute many other programs to improve air travel.
On a good day, flying can be a comfortable and efficient way to travel. All too often, however, eather or overcbooking can cause delays that ripple through the system, inducing missed flights, anxiety, discomfort and lots of lost time and money.
Things had gotten so out of whack that in 2003, Congress enacted a law designed to bring online a Next Generation — or NextGen — air traffic control system by January 2020. The Department of Transportation would require the majority of aircraft operating within U.S. airspace to be equipped with new technology to track and coordinate aircraft and would institute many other programs to improve air travel.
“It’s hard to argue that delays don’t occur in the system,” said Hamsa Balakrishnan, an associate professor of Aeronautics and Astronautics at the Massachusetts Institute of Technology (MIT). “The delays have not just economic costs—which are significant—they have environmental costs as well.”
An NSF release reports that Balakrishnan began her career as an aerospace engineer. Over time, her research migrated from the nuts-and-bolts of how aircraft fly, to the details of how air traffic systems operate overall. Today, she studies air traffic control and management and works to come up with the analytic tools and algorithms required to keep flights safe and runways moving efficiently.
“We know that demand is projected to increase,” she said. “How do you build algorithms that don’t let your delays explode, while at the same time meeting the increased demand?”
According to Federal Aviation Administration (FAA) estimates, increasing congestion in the air transportation system of the United States, if unaddressed, will cost the American economy $22 billion annually in lost economic activity by 2022. Balakrishnan and her colleagues believe they can address major inefficiencies in the system through a combination of better models of air traffic control systems and new embedded technologies.
Even small changes in air traffic management can have a large impact on the overall air travel system. For instance: pushback, the rate at which aircraft should be leaving their gate.
“Aircraft are allowed to push back whenever they’re ready to, and the problem with this is, the runway capacity is constrained,” Balakrishnan explained. “Planes can only take off one at a time from a single runway, so it doesn’t make sense for fifteen or twenty aircraft to be waiting there at the same time.”