Sandia Labs-developed IED detector being transferred to the U.S. Army
Hudgens and Sandia manager Bill Hensley say had it not been for Sandia’s research and development process funded, in part, by the Laboratory Directed Research and Development program, to reduce the size of the SAR that led to MiniSAR, Copperhead might never have been ready in time to help the Army.
“If we wouldn’t have made that investment, we wouldn’t have been in that position to be ready. Otherwise it would have taken us years,” Hudgens said.
MiniSAR, however, was still limited when it came to the real-world problem of IEDs. As Americans heard more reports of soldiers killed or maimed by IEDs in Afghanistan and Iraq, Sandia researcher Bryan Burns wanted to help.
“People were getting blown up driving along the road and I said, ‘We can help solve this problem,’” Burns said.
A few different demonstrations and tests were conducted to demonstrate the fundamental capability. Though some experts expressed doubt that any coherent change-detection system could detect IEDs, in 2007, the Sandia team connected with Mark Moran, director of the special projects office at CRREL. Moran’s team was running a series of scientific investigations to predict the operational ability of various technologies for JIEDDO. During one of those tests, the team showed the value of the MiniSAR technology.
JIEDDO then became interested in the technology and assigned Moran’s team at CRREL as the developing and fielding program office. JIEDDO needed Copperhead developed in nine months, about half Sandia’s normal development period, Hensley said.
Focusing on mountaintops, valley floors simultaneously is solved
Just as cameras are limited by depth of field — where a near object is in focus but the background is blurry or vice versa — MiniSAR needed a way to keep the entire height of the terrain in an image in focus, for example, the top of a mountain and the valley floor.
So Bryan created advanced image-processing algorithms that focused the high and low terrain simultaneously while continuing to provide fine-resolution imagery. The new capability, which has been proven effective on slopes of more than 40 degrees, made Copperhead useful in the wide variety of terrain present in places like Afghanistan.
To make Copperhead a reality, more than 300 Sandia employees each spent at least three months on the project during development, including researchers with diverse areas of expertise and staff who helped with logistics, foreign travel and contracting, Hensley said.
Sandia and its partners had to quickly adapt and enhance the 30-pound MiniSAR so it could fly on NAVAIR’s 17-foot Tiger Shark UAV and accomplish the mission JIEDDO had set.
When the modifications were made Copperhead’s MiniSAR technology weighed about sixty-five pounds and was about one foot wide, it could do its entire image processing on board and was rugged enough for the environments it would face, Hudgens said.
Then the modified MiniSAR was integrated into the operational system known as Copperhead, which includes hardware and software tools to help radar analysts on the ground understand the data coming from the aircraft and a training program for them.
“We developed a flight planner and an exploitation tool that the analysts use in the ground station, and we had to develop all the concepts of operations to make it work and tactics, techniques and protocols for utilizing the system,” Hudgens said. “While MiniSAR was a radar that we flew and used to collect data, Copperhead is an entire system, everything from communications to analyzing imagery to providing information useful to people who defeat IEDs.”
Wartime conditions test a success
In 2009, JIEDDO sponsored a 30-day evaluation of the technology in wartime conditions and — despite doubts raised that all the images could have such fine resolution — Copperhead has been fielded in Afghanistan ever since, Hensley said.
Copperhead uses a technology called coherent change detection, which compares a pair of extremely detailed SAR images taken of the same scene but at different times. The process allows analysts to detect minute physical changes on the surface.
“There are other approaches to change detection out there, but this is the only one that’s all-weather,” Hudgens said.
An earlier version of coherent change detection developed at Sandia showed images of a lawn taken 20 minutes apart from an aircraft flying 10,000 feet up and three miles away. The images revealed the path of a lawn mower due to the bending of the blades of grass.
Burns and the team are working with the Army to ensure that Copperhead continues to solve current problems. “We’re helping them to use it in better and more effective ways, even when things change,” he said. “The system is continuously adapting.”
Sandia’s transfer of the technology to the Army will take years to complete, but the Sandia team members say they are happy that they’ve provided the Army with a needed tool to detect IEDs.
Of the transfer to the Army, Hensley said, “We’re making a positive, measureable impact right now on the security of U.S. people. This acknowledgement that it needs to be kept in the Army is very satisfying.”