view counter

In the trenchesSynthetic aperture sonar to help in hunting sea mines

Published 20 June 2014

Mines are plentiful and easy to make. Some mines explode on contact. Others are more sophisticated, exploding or deploying torpedoes when their sensors detect certain acoustic, magnetic or pressure triggers. Some can destroy a ship in 200 feet of water. Since the Second World War, sea mines have damaged or sunk four times more U.S. Navy ships than all other means of attack combined, according to a Navy report on mine warfare. New sonar research could improve the Navy’s ability to find sea mines deep under water. The underlying technology, known as synthetic aperture sonar (SAS), uses advanced computing and signal processing power to create fine-resolution images of the seafloor based on reflected sound waves.

Since the Second World War, sea mines have damaged or sunk four times more U.S. Navy ships than all other means of attack combined, according to a Navy report on mine warfare. New sonar research being performed by the Georgia Tech Research Institute (GTRI) could improve the Navy’s ability to find sea mines deep under water.

The underlying technology, known as synthetic aperture sonar (SAS), uses advanced computing and signal processing power to create fine-resolution images of the seafloor based on reflected sound waves. Thanks to the long-term vision and a series of focused efforts funded by the Office of Naval Research spanning back to the 1970s, SAS has become a truly robust technology. When it transitions to the fleet, the SAS will dramatically improve the Navy’s ability to carry out the mine countermeasures mission.

“The Navy wants to find sea mines,” said Daniel Cook, a GTRI senior research engineer. “There are systems that do this now, but compared to SAS, the existing technology is crude.”

A GT release reports that the SAS research is funded by a grant from the Office of Naval Research, and is conducted in collaboration with the Applied Research Laboratory at the Pennsylvania State University. In the past year, the group has made strides in improving the ability to predict and understand sonar image quality and has published and presented their work at conferences.

Sonar systems emit sound waves and collect data on the echoes to gather information on underwater objects.

The Navy uses torpedo-shaped autonomous underwater vehicles (AUVs) to map swaths of the seafloor with sonar sensors. Perhaps the most well-known example is the Bluefin 21 used to search for Malaysian Airlines Flight 370. The AUVs zigzag back and forth in a “mowing the lawn pattern,” Cook said. These AUVs can map at a range of depths, from 100 to 6,000 meters.

SAS is a form of side scanning sonar, which sends pings to the port and starboard sides of the AUV and records the echoes. After canvassing the entire area, data accumulated by SAS is processed into a mosaic that gives a complete picture of that area of the seafloor.

view counter
view counter