Oil spillsResponding to future oil spills: lessons learned from Deepwater Horizon
A special collection of articles about the Deepwater Horizon oil spill provides the first comprehensive analysis and synthesis of the science used in the unprecedented response effort by the government, academia, and industry;with the benefit of hindsight and additional analyses, these papers evaluate the accuracy of the information that was used in real-time to inform the response team and the public
A special collection of articles about the Deepwater Horizon oil spill provides the first comprehensive analysis and synthesis of the science used in the unprecedented response effort by the government, academia, and industry. Papers present a behind-the-scenes look at the extensive scientific and engineering effort — teams, data, information, and advice from within and outside the government — assembled to respond to the disaster. With the benefit of hindsight and additional analyses, these papers evaluate the accuracy of the information that was used in real-time to inform the response team and the public.
For the most part, information presented publically during the spill was accurate. Oil was rapidly consumed by bacteria, seafood was not contaminated by hydrocarbons or dispersants, and the oil budget was by and large accurate. The only part of the oil budget that was later found to be inaccurate was the fraction of oil that was chemically dispersed versus naturally dispersed. That information had no impact on public safety, seafood safety or the response effort, but understanding the amount of oil that was dispersed chemically vs. naturally is important for future such efforts.
A NOAA release reports that one of the most controversial issues concerned the rate at which hydrocarbons were spewing forth from the damaged well. The lengthy time it took for the scientific team to determine the flow rate led to considerable speculation that the government was withholding information. In reality, as described by the papers, the government/academic team charged with determining flow rate took the time they needed to get it right. The accuracy of the flow rates improved with time as more and better in situ data were acquired and more independent methods reported results.
Valuable lessons were learned, with preparation and knowledge being two key elements needed to respond to disasters such as the Deepwater Horizon oil spill, one of the worst environmental emergencies in the history of the U.S. and one that also took the lives of eleven oil rig workers.
Two overview papers and 13 specialty papers constitute a special section of the prestigious Proceedings of the National Academy of Science. Of the fifteen papers, three are newly published: two introductory papers and one specialty paper provide an inside look at the scientific and engineering aspects of stopping the flow of oil, guaranteeing the integrity of the well once it was shut in, estimating the amount of oil spilled, capturing and recovering oil,