view counter

Dutch test-levee experiment helps strengthen U.S. levees, dams

into the ground, beneath and around levees and dams. The cost-effective arrays accurately measure soil deformation, vibration, and pore pressure at critical points of a flood-control system.

The release notes that these SAPP arrays are a critical part of an ongoing Rensselaer-led research project to create an integrated suite of technologies and methods for ensuring the reliability and safety of flood-control infrastructure. The project, funded by the U.S. National Institute of Standards and Technology’s (NIST) Technology Innovation Program, pairs SAPP measurements with GPS and InSAR, or satellite-based interferometric synthetic aperture radar measurements. Accurate down to the millimeter, InSAR captures and analyzes high-resolution satellite images of levees and dams, and measures how far these structures have shifted or sunk due to environmental changes such as rain, floods, tremors, or even aging. To bridge the gap between InSAR satellite data and below-ground SAPP measurements, the researchers will augment the framework with a network of high-resolution GPS sensors to track the physical movement of structures and the ground surface.

“Through our joint venture partnership with Geocomp Corp., a dense grid of instruments including SAPPs, GPS, and radar reflectors has been installed at the London Ave. Canal in New Orleans. The real-time data collected from this site, and others in the New Orleans area, will make performance information available during this and upcoming hurricane seasons, in addition to providing calibration data for health assessment algorithms,” Bennett said. Led by Zeghal, this project is a collaboration with Bennett, Abdoun, and Birsen Yazici, professor in the Department of Electrical, Computer, and Systems Engineering and the Department of Biomedical Engineering at Rensselaer.

Data collected from the SAPP, InSAR, and GPS systems are integrated into an automated “smart network” that provides a long-term continuous assessment of the health of levee systems from both underground and aerial perspectives. In the case of a levee failure, data collected by the automated monitoring system will be used to organize a quick emergency response to repair levees and minimize the extent of flooding. Collected data is also being paired with computational simulation techniques to build accurate, predictive models of how different levees will react to different environmental conditions. These models help inform plans to mitigate levee damage and respond to disasters, and provide quantitative assessments that will better allow federal and local governments to prioritize where infrastructure repairs are most needed.

In the United States, the national flood-control infrastructure is aging and its structural health is deteriorating, Abdoun said. The system comprises more than 5,600 km of levees, and 43 percent of the U.S. population lives in counties with levees designed to provide some level of protection from flooding. Some of these levees are as old as 150 years. In 2009, the American Society of Civil Engineers Report Card for America’s Infrastructure gave the condition of the nation’s dams a grade of D, and levees a grade of D-minus.

view counter
view counter