California’s hydropower is vulnerable to climate change
of climate change on hydropower.”
Madani explained that, on average, California could lose up to 20 percent of its hydropower generation under dry climate change, which can result in 8 to 18 percent reduction in hydropower revenues for producers.
“Our results do not yet suggest that we need to build more dams in California for hydropower generation,” said Madani, who was recently selected as one of the 10 New Faces of Civil Engineering in 2012 by the American Society of Civil Engineering. “But they suggest that hydropower, a highly valuable energy source, may be less available. So we have to look for clean replacements and we have to reduce our energy demands as much as we can.”
The release notes that Madani began his research on climate change effects on California’s hydropower as a graduate student at UC Davis, where, along with a colleague, he developed an Energy-Based Hydropower Optimization Model (EBHOM) that covers more than 150 high-elevation hydropower units in California. An optimization model, EBHOM prescribes the best operation policies in response to the changes in climatic conditions.
A new version of the model that Madani developed can estimate changes in hydropower pricing and demand in response to temperature changes.
“It helps us consider the effects on supply and demand simultaneously,” Madani said of the model’s new version. “But modeling studies have limitations that need to be addressed as more data become available and the science improves. Future studies need to have a closer look at the environmental side of this problem. Changes in operations of the high-elevation systems should be done after careful consideration of all possible environmental damages.”
Madani’s research at UCR was funded by CEC. As the principal investigator of the research project, he worked with fellow-researchers at Lund University, Sweden; the University of Central Florida; and the Bourns College of Engineering at UCR.
Madani’s postdoctoral research took place during 2009-10 at the WSPC, where he closely worked with Ariel Dinar, its director.
“I am an engineer and Ariel is an economist,” Madani said. “We talk different languages and sometimes might think differently about the same problem. The different views helped me learn many new things and gave me the ability to think out of the engineering thinking box. Working at the WSPC was thus a true interdisciplinary research and education experience for me.”
— Read more in Climate Change Effects on the High‐elevation Hydropower System with Consideration of Warming Impacts on Electricity Demand and Pricing (A White Paper from the California Energy Commission’s California Climate Change Center, July 2012)