Small, local energy technologies to help sustain vital services during blackouts
smart meters that can efficiently disconnect non-critical loads, add automated components to reroute electricity circuits, and upgrade fault-handling equipment and control software to ensure the smaller grid’s reliability.
Community social services deemed “critical” during a substantial power outage could include a subset of community grocery stores, gas stations, cellular telephone base stations, streetlights, police stations, and schools. The authors estimate that for their model community 350 kW of power would be necessary to continue these services during a blackout, but this limited power supply could be cycled between the services. For example, the school could be operated in day shifts for elementary, middle, and high school students and then close at night, when the police station could be powered at full capacity. Beyond those basic necessities, communities could invest in backup power for water and sewage treatment, traffic lights, and the local jail. Additional arrangements would need to provide for temperature control if a blackout occurred in a region or season that required heating or cooling for basic survival. Most hospitals, airports, and radio and television broadcasting stations already possess independent emergency backup power supplies.
Narayanan and Morgan studied the costs of building regional DG circuits to support critical social services. Scenarios vary based on whether a region has zero, limited, or sufficient existing DG capacity. If enough DG units already exist within a region, the costs include the fee to purchase the options to acquire 350 kW during a blackout. If a region has insufficient existing DG infrastructure, the costs of installing new DG units and providing maintenance are key. Other considerations include the use of public or private financing options to fund a DG project and the probability of an extended regional blackout. The researchers estimate that the cost per household for implementing various DG scenarios would be $9 to $22 per year for risk probabilities ranging from 0.01 to 0.0001. Even the highest cost estimate is far less than 1 percent of an assumed median household income of $50,000, providing support for switching to DG units. The potential costs to a community resulting from a large power outage also must be factored into decisions about whether to invest in these upgrades.
Strategically constructing regional DG circuits may help to reduce the effects of catastrophic electricity failure resulting from natural or human-triggered events, ensuring that critical services necessary for the health and safety of communities will be provided. The authors note that this strategy would be most effectively implemented on a statewide or regional level to prevent the influx of citizens from neighboring communities that lack such an emergency power procedure to ensure critical social services.
Narayanan notes, “There are currently a few obstacles to implementing such a strategy, including state laws that prevent the deployment of cost-effective combined heat and power (CHP) ‘microgrids,’ and the lack of incentive for power companies to invest in such a system. We have the technology to make our critical services less vulnerable to large blackouts. What we need now are the right policy initiatives to make it happen.”
— Read more in Anu Narayanan and M. Granger Morgan, “Sustaining Critical Social Services During Extended Regional Power Blackouts,” Risk Analysis 32, no. 7 (July 2012): 1183–93 (DOI: 10.1111/j.1539-6924.2011.01726.x); and M. Granger Morgan and Anu Narayanan, “The next outage doesn’t have to be this bad,” Washington Post, 6 July 2012